Variational method to the second-order impulsive partial differential equations with inconstant coefficients (I)

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method

In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...

متن کامل

Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients

In this paper we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained.

متن کامل

HAAR WAVELET AND ADOMAIN DECOMPOSITION METHOD FOR THIRD ORDER PARTIAL DIFFERENTIAL EQUATIONS ARISING IN IMPULSIVE MOTION OF A AT PLATE

We present here, a Haar wavelet method for a class of third order partial dierentialequations (PDEs) arising in impulsive motion of a flat plate. We also, present Adomaindecomposition method to find the analytic solution of such equations. Efficiency andaccuracy have been illustrated by solving numerical examples.

متن کامل

On the Oscillation of Second Order Linear Impulsive Differential Equations

For the second order linear impulsive differential equation with oscillatory coefficient ⎧⎨ ⎩ (r(t)x′(t))′ +h(t)x(t) = 0, t = tk, tk t0, k = 1,2, · · · , x(t+ k ) = akx(tk), x ′(t+ k ) = bkx ′(tk), k = 1,2, · · · , x(t+ 0 ) = x0, x ′(t+ 0 ) = x ′ 0, (E) where h can be changed sign on [t0,∞) , by using the equivalence transformation, we establish an associated impulsive differential equation wit...

متن کامل

Nonoscillatory Solutions of Second Order Differential Equations with Integrable Coefficients

The asymptotic behavior of nonoscillatory solutions of the equation x" + a{t)\x\' sgnx = 0, y > 0 , is discussed under the condition that A(t) = limr_00/, a(s)ds exists and A(t) > 0 for all t. For the sublinear case of 0 < y < 1 , the existence of at least one nonoscillatory solution is completely characterized.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Engineering

سال: 2011

ISSN: 1877-7058

DOI: 10.1016/j.proeng.2011.08.1048